International Equivalent Standards
Detailed Equivalency Mapping
国 | Standard Code | 合金の指定 | Composition Similarity | Performance Match | Key Applications |
---|---|---|---|---|---|
ドイツ | DIN CuSn12 | 錫青銅 | 100% | Reference Standard | Precision Engineering |
アメリカ合衆国 | ASTM B124 | UNS C91300 | 95% | 高い | Bearings & Bushings |
イギリス | BS 1400 | PB2 | 93% | Substantial | 船舶用部品 |
日本 | JIS H5120 | CA406 | 90% | 良い | Mechanical Parts |
中国 | GB/T 5231 | QSn12-3 | 88% | Comparable | 産業機械 |
化学組成分析
Typical Composition Range (%)
- Copper: 86.5 – 89.5
- Tin: 11.5 – 12.5
- Lead: 0.05 max
- Phosphorus: 0.01 – 0.35
性能特性
Mechanical Properties Comparison
- 抗張力
- CuSn12: 480-520 MPa
- Equivalent Alloys: 460-510 MPa
- 降伏強さ
- CuSn12: 280-340 MPa
- Equivalent Alloys: 260-330 MPa
- 伸長
- CuSn12: 15-25%
- Equivalent Alloys: 12-22%
Critical Application Domains
Recommended Usage Scenarios
- ベアリングとブッシュ
- Marine Engineering Components
- Wear-Resistant Mechanical Parts
- Low-Speed Sliding Mechanisms
- Corrosion-Resistant Environments
Selection Criteria Checklist
重要な考慮事項
- Mechanical Load Requirements
- Friction and Wear Characteristics
- 耐食性
- 動作温度範囲
- Cost Constraints
Technical Limitations
Substitution Challenges
- Slight variations in thermal conductivity
- Microstructural differences
- Specific lubrication requirements
- Potential performance variations
Economic Analysis
Cost Comparison (Relative to CuSn12)
- ASTM C91300: -3% to +2%
- BS PB2: 0% to +5%
- JIS CAC406: -2% to +3%
- GB QSn12-3: -5% to 0%
Emerging Trends
Future Developments
- Advanced surface treatments
- Nano-structured bronze alloys
- Improved manufacturing techniques
- Enhanced corrosion resistance
結論
Selecting the optimal CuSn12 equivalent requires comprehensive analysis of specific engineering requirements, environmental conditions, and performance metrics.
Final Recommendation: Conduct thorough testing and consult metallurgical experts before final material selection.